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Problem: How does inclusion of coal swelling change economic 
predictions for sequestration in Eastern coal seams?

• Eastern coal seams tend to be thin with high methane 
content and sequestration capacity per mass of coal and  
low water content relative to western coals.

• Shrinkage and swelling of coal in the presence of CO2 is 
poorly understood, but some simple models have been 
developed.

• Some studies have been performed to consider the effects 
of coal material properties on sequestration capacity, but 
economics have not been included.
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Approach: Economic analyses were based on 
coal seam simulations.

• Use PSU-COALCOMP, a state-of-the-art 
coalbed methane/sequestration simulator.

• Simulate sequestration in coal seams with a 
range of coal material properties (E,ν,φ).

• Collect start-up and operational cost data.

• Use “net present value” (NPV) analysis to 
compare multiple-year scenarios at different 
rates of return.
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Coal shrinkage and swelling can have 
significant impact of cleat permeability.

• Based on the Palmer-
Mansoori model

• Most important effect is on 
permeability

• Most important coal 
properties for shrinkage 
and swelling:
− Porosity (φ)
− Young’s modulus (E)
− Poisson’s ratio (ν)

Original CoalCoal ShrinkageCoal Swelling

Cleat space

Coal matrix
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A 3-mile x 3-mile area with repeated well patterns 
was used for the purpose of scaling the economics.

• Inverted five spot pattern,    
160 acres

• Wells for single pattern:
− four producers (black squares)
− one injector (red squares)

• Wells needed for the repeated 
pattern:
− 49 producers
− 36 injectors

• Thirty-six full patterns to cover 
area
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Reservoir properties used are from Pittsburgh coal.

Reservoir Thickness 2m Critical Gas Saturation 0.0 %

Depth 425 m Critical Water Saturation 10.0%

Lateral Permeability 0.01 µm2 (~10md) Initial Water Saturation 40%

Skin 0.0 Reservoir Temperature 45oC

Sorption Volume constant 
(CH4, CO2)

15 kg/tonne,
90 kg/tonne

Initial Mole Fraction of Gas
(CH4, CO2)

100%
0%

Sorption Pressure constant 
(CH4, CO2)

5000 kPa, 
2000 kPa Reservoir Drainage Area 4.8 km x

4.8 km 

Rock Density 1.4 g/cm3 Wellbore Radius 0.1 m

Initial Reservoir Pressure 5000 kPa
(~725 psi) Coalface Pressure at Producers 700 kPa

(~100psi)
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Costs used were from industry and other available sources.

Cost TypesCost Types Amounts ($k)Amounts ($k)
Drilling per well

Total for 85 wells
94

7,990

Surface Equipment
Total for 85 wells

19
1,615

Downhole Equipment
Total for 85 wells

8
680

Pipeline costs
10 miles 150

SMV capital costs 
(@10%) 1,045

Total StartTotal Start--upup 11,480

Operation and 
Maintenance 3,060

SMV maintenance costs 
(@10%) 305

Total Yearly costsTotal Yearly costs 3,365

Yearly 
Costs

Start 
up

PricePriceEconomic Economic 
parametersparameters

6
9
12
15
18

Interest Rate (%)

0.40
0.99

Water Disposal 
Cost ($/STB)

0      0.0
5      0.26
10     0.53
15     0.79
20     1.05

CO2 credit 
($/tonne); ($/Mcf)

10     0.53
20     1.05
30     1.58
40     2.10
50     2.63

CO2 cost 
($/tonne); ($/Mcf) 

3
4
5

CH4 price ($/mcf)

Several economic parameters were varied.
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Net present value (NPV) analysis was used for 
the economics.

• Each year, costs are 
subtracted from 
revenues.

• Profits are discounted to 
year zero (project start 
year) using given rate of 
return.

• NPV for all years is 
summed to give a single 
cumulative project NPV.

• NPV helps compare 
projects that have 
different dollar values in 
the future and different 
project lengths.
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Red diamonds are yearly NPV values; blue line is 
cumulative NPV.
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We performed sensitivity studies to determine the effects of 
coal seam properties (related to swelling) on project worth.

• Coal parameters
− Young’s modulus (E)
− Porosity (φ)
− Poisson’s ratio (ν)

Young's Modulus
(x106) Pa     (x106) psi

Poisson’s 
Ratio

Porosity
(%)

1,000         0.145 0.2 0.5

5,000         0.725 0.3 1

10,000        1.450 0.4 2
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Young’s Modulus x (10  ) kPa6 Poisson’s Ratio
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in a complex way.

For a fixed set of economic parameters, the NPV depends heavily on Young’s 
modulus, Poisson’s ratio, and porosity.

φ = 2%

φ = 0.5%

φ = 1%

Net present value depends on the coal seam properties 
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Porosity=0.5%
Injection Pressure=5000kPa
CH4 price=4$/mcf
CO2 cost=0.53 $/mcf
CO2 credit=0
Disposal cost= 0.4 $/stb
Interest Rate=0.12

Young’s modulus has a much stronger effect on 
NPV than Poisson’s ratio.

At low Young’s modulus, higher Poisson’s ratio give better results.

However, at high Young’s modulus, lower Poisson’s ratio give better results.

ν
ν
ν
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Swelling can significantly reduce injectivity.
Porosity = 0.5%

Injection rate=5000kPa

Case1: E=10,000MPa  &  ν=0.4

Case2: E=1,000MPa  &  ν=0.2

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 1000 2000 3000 4000 5000 6000 7000
Time (days)

C
O

2 
In

je
ct

io
n 

ra
te

 (s
cf

/d
ay

)

No Shrinkage & Swelling
Case1
Case2



Descriptor - include initials, /org#/date

Poisson’s ratio=0.3

Porosity= 0.5%
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Swelling will have a significant impact on project 
worth.

• At low CO2 costs, neglecting swelling will lead to 
overestimating project worth.

• But at high CO2 costs, neglecting swelling will lead 
to underestimating project worth.

= CO2 cost – CO2 credit
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 Primary Production 

Porosity can have more impact than CO2 cost.

• CO2 costs still have a significant effect for higher porosities.
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Conclusion: Shrinkage and swelling should be taken 
into account when planning coal seam sequestration.

• Injectivity of CO2 decreases when swelling 
occurs.

• Cleat porosity and Young’s modulus are 
critical parameters in determining a project’s 
value.

• Profits from a project may be affected 
positively or negatively because of swelling.

• The net CO2 cost will help determine if 
swelling contributes positively or negatively to 
NPV.
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Other things to consider:

• Every coal seam is different!!!
• Multiple coal seams provide greater economic 

incentive.
• Different well patterns can be used to optimize 

sequestration.
• Injectivity may be increased by stimulating 

wells.
• Horizontal wells vs. vertical wells.
• Rising natural gas prices raise possibilities.
• Monte Carlo analysis may provide further 

insight.




